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The solvent accessibilities of amino acid side chains in a protein can be determined computationally
from x-ray crystallographic data. The sequential profile of these accessibilities shows a seemingly ran-
dom variation. A generalized box-counting analysis of such profiles shows multifractal behavior. Mul-
tifractal spectra obtained for a variety of proteins are broader than a corresponding random array, indi-
cating an underlying hierarchical structure to the proteins. The multifractal parameters are used to ex-
tract an underlying binary multiplicative process with one-step memory. Similar binary processes occur
in the generation of helix-coil sequences in biopolymers. Computer simulations were performed that
generated misfolded proteins. The misfolded proteins have narrower multifractal spectra than the prop-
erly folded ones. Thus, this multifractal analysis can be used as a diagnostic tool in assessing proper

folding in structure prediction algorithms.

PACS number(s): 87.10.+e, 87.15.By, 61.43.Hv, 05.90.+m

I. INTRODUCTION

Fractal geometry provides a mathematical formalism
for describing complex spatial and dynamical structures
[1,2]. It has been used to investigate such complex phe-
nomena as dielectric breakdown, turbulence, and
diffusion-limited aggregation. The fractal approach al-
lows a unified characterization and comparison of diverse
structures. Because of the underlying complexity of their
structure, it is natural to develop fractal descriptors of
proteins. To date, such applications have been limited.
Protein structure has been characterized by two fractal
descriptors, the fractal dimension of the protein back-
bone and the fractal surface dimension. Proteins appear
to follow ‘“‘universal” laws with regard to these descrip-
tors. A large data set of proteins shows that the dimen-
sion of the contour of the protein backbone is slightly less
than 3 [3]. Thus, proteins behave statistically as col-
lapsed polymers. The fractal dimension of the accessible
surface of a protein has been investigated in a number of
studies [3-6]. Typically, the value for the surface fractal
dimension is approximately 2.2. Protein surfaces are
slightly more convoluted than a smooth spherical sur-
face, which would have a dimension of 2. Thus, the frac-
tal description of a protein is consistent with the common
view of proteins as compact structures with smooth sur-
faces [7]. The utility of the approach lies in the quantiza-
tion of these features. Recently, these gross morphologi-
cal factors have been related to the kinetics of hydrogen
isotope exchange [8,9]. This fractal theory of the kinetics
of small molecule-protein interactions demonstrates the
role of the fractal surface dimension of the protein.

Despite the success of the fractal formalism, by the
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mid 1980s the limitations of the approach had become
apparent. Interest shifted from characterizing a set of
points in a complex geometric structure to characterizing
complex probability densities. Such problems required a
generalization of fractal concepts, and the multifractal
formalism was developed (for reviews see [10-12]). Den-
sity distributions are characterized by an infinity of frac-
tal dimensions, hence the terminology multifractal. The
multifractal formalism has been used as a descriptor for a
variety of physical and chemical phenomena, such as
diffusion-limited aggregation [13], percolating clusters
[14], energy dissipation in fully developed turbulent flows
[15], configuration of Ising spins at critical points [16],
and the characterization of strange attractors [17]. Re-
cently the multifractal approach has been extended to the
description of helix-coil transitions in biopolymers
[18,19].

In the present work, we apply the multifractal formal-
ism to the analysis of a structural parameter in proteins
known as the solvent accessibility. Using a “ball rolling”
algorithm [7], it is possible to determine from x-ray struc-
tures the exposed surface area of each amino acid residue
in the protein sequence. Typically, a probe of the radius
of a water molecule is used. The fractional solvent acces-
sibility is the exposed surface area divided by the area of
a fully exposed amino acid as it would appear in the mid-
dle of a tripeptide. In Fig. 1, the solvent accessibilities of
the amino acid side chains are shown as a function of po-
sition along the protein backbone. Two questions will be
addressed with regard to this sequential display of data.
First, is there any correlation in this seemingly random
pattern? Second, if there are correlations, what are the
implications for the structure of the protein? There is a
wide variety of methods for analyzing correlations in
“noisy data.” Previously, a Hurst or range analysis was
used to demonstrate long-range correlation among
Debye-Waller factors at different positions along a pro-
tein chain [20]. In the present work, we use the mul-
tifractal formalism to analyze solvent accessibility
profiles. One reason for choosing this particular ap-
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proach is that the multifractal spectrum is a reflection of
a hierarchical structure. Ultimately, one would hope to
relate the multifractal properties of proteins to other
hierarchical models, such as the conformational substates
of Frauenfelder, Sligar, and Wolynes [21]. As will be
seen, the multifractal spectrum provides a signature for
correlations in properly folded proteins. Thus, it pro-
vides a diagnostic for assessing protein folding algo-
rithms.

In Sec. II, the algorithm for calculating multifractal
spectra of the solvent accessibilities of protein amino acid
side chains is presented. This algorithm is essentially a
“box-counting” method and is common in the multifrac-
tal literature [22]. In this section, the multifractal param-
eters are defined, and technical details regarding the cal-
culation are presented. Section III presents the mul-
tifractal spectrum for 18 proteins. These results show the
inherent multifractal nature of the solvent accessibilities.
Results for “misfolded” proteins are also presented. The
multifractal spectra can distinguish proper from misfold-
ed structures. Empirical evidence shows that a properly
folded protein will have maximized the width of its mul-
tifractal spectrum. In Sec. IV, it is shown that protein
multifractal spectra can be represented by a binary multi-
plicative model with one-step memory. The formalism
for this model is presented, and it is used to analyze the
protein spectra. Finally, in Sec. V, the meaning of mul-
tifractal behavior in the context of protein structure is
discussed.

II. ALGORITHM FOR CALCULATING
MULTIFRACTAL SPECTRA

A generalized box-counting method is used to analyze
sequential data (as in Fig. 1) on the solvent accessibilities
of protein side chains. This method is used to determine
the “generalized” dimensions associated with the shape
of the profile. These generalized dimensions provide in-
formation on the hierarchical nature of the “noise” in
Fig. 1. To proceed with the details of the method, con-
sider the solvent accessibilities as a sequence of length 7,

.,n}, (1)

where n is the number of amino acids that constitute the
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FIG. 1. Solvent accessibility as a function of residue number
for the protein myoglobin (153 residues).

protein, i.e., the length of the protein. The solvent acces-
sibilities are ordered along a linear array according to
their respective positions in the amino acid sequence.
This sequence is “covered” with boxes of a defined length
and the value(s) of the accessibilities within a given box is
assigned to the box. Initially, one starts with boxes of
size 1, i.e., it covers a single residue. The value of the ac-
cessibility of that residue is assigned to its respective box.
In the second iteration, the box size is doubled, so one
box covers two residues. The sum of the two accessibili-
ties covered is now assigned to the respective box. The
procedure is repeated with increasing box sizes. The fol-
lowing illustrations shows how the box-counting algo-
rithm was applied to a linear sequence for boxes of size
8=1,2,and k:
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where x; is the value of the solvent accessibility for the
ith residue along the chain and y; is the sum in the jth
box,

8
Bi(8)=3 Xit(j-1s - (2)
i=1
In our algorithm, boxes of size §=35 to 34 were used.
A function Z,(8) is now defined that provides the gth
moment of the measure,

n/8
Zq(8)=2,u}(8) . (3)
J
The scaling ansatz is made such that [2]
Z,(8)=1lim § ), 4)
—0

where 7(q) is known as the mass exponent. Since g is a
discrete variable, the limiting behavior of the mass ex-
ponent was obtained from the initial slope of a In[Z,(3)]
versus In(8) plot using a linear least squares fit. This pro-
cedure is represented as
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In[Z,(8)]
In(8)

The singularities of the measure are characterized by the
Lipschitz-Holder exponent a. This parameter is related
to the mass exponent 7 according to the relation

T(g)=— (5)

—_4d
alg)= dq 7(q) . (6)
Substitution of Eq. (5) into Eq. (6) yields

S uiln(y;)
j

Z,(®(d) 7

alg)=—

Again, the limiting behavior of the discrete variable g re-
quires that the Lipschitz-Holder exponent be obtained
from the initial slope of a plot of 3 ;ufln(u;)/Z,(8) vs
In(8). Now, the multifractal spectrum f(a) versus a can
be calculated according to

fla)=qalq)+7(q), (8)

where Feder’s convention has been used in Eq. (8) [2].

The function Z,(8) is analogous in structure to the
partition function of statistical mechanics (cf. [10]). In
this analogy the multifractal parameters become “gen-
eralized” thermodynamic functions. This correspon-
dence is based on the Legendre transformation properties
of 7(q). Thus, g is a generalized temperature, 7 is the
generalized free energy, « is the generalized energy, and f
is the generalized entropy. In this formal analogy, the
multifractal spectrum represents a relationship between
the generalized energy and the entropy of the problem.

As seen in the previous presentation, a spectrum is
generated by calculating Z,(8) at a fixed g value and
varying 8. From the two linear regressions, f(a) and «a
are determined. The entire spectrum is generated by
varying g. Both positive and negative integer values of g
were used. For a given box size §, there may not be
sufficient residues in the last box to complete the se-
quence. To circumvent this problem, an initial segment
of the sequence was appended to the sequence to fill the
last box. Thus, the algorithm entailed a wraparound
method (periodic boundary conditions). As a check on
the error introduced by this procedure, periodic bound-
ary conditions were applied for sequences taken in both
the forward (amino—carboxy) and reverse (carb-
oxy—amino) direction. This changes the content of the
appended sequence. The wraparound algorithm pro-
duced essentially the same spectra, regardless of the
direction of the sequence. A typical comparison of for-
ward and reverse sequence spectra is shown in Fig. 2.

All multifractal spectra were generated from the x-ray
crystallographic data using coordinate files obtained from
the Protein Data Bank at Brookhaven National Labora-
tory [23]. The fractional solvent accessibilities of the am-
ino acid side chains were determined computationally us-
ing the computer program ACCESS [24]. Initial slopes for
determining 7 and a [Egs. (5) and (7)] were determined
from linear regressions.
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FIG. 2. Multifractal spectra of hexokinase using the
wraparound algorithm: forward sequence (O ) and reversed se-
quence (). The multifractal spectrum for data derived from a
random number sequence having a length identical to hexo-
kinase (374 residues) is also shown (A ). Note the narrowness of
the random number spectrum as compared to that of the pro-
tein.

III. RESULTS

The multifractal spectra of 18 proteins were obtained
using the algorithm in Sec. II. The proteins analyzed be-
long to five standard classes [25]: a [Fig. 3(A)], B [Fig.
3(B)], a, B alternate [Fig. 4(A)], a, B segregate [Fig. 4(B)],
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FIG. 3. (A) Multifractal spectra of solvent accessibilities for
the a class: O, cytochrome C; 00, Ca-binding parvalbumin; A,
myoglobin. (B) B class: O, plastocyanin; OJ, a-lytic protease; A,
concanavalin A4; V, elastase; O, acid proteinase.
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FIG. 4. (A) Multifractal spectra of solvent accessibilities for
the class a, B alternate: O, flavodoxin; [J, adenylate kinase; A,
arabinose-binding protein; 0, carboxypeptidase 4. (B) a, B
segregate: O, papain D; O, actinidin; /\, carbonic anhydrase B;
Q, thermolysin.

and FeS (spectra not shown) proteins. In all cases, a sim-
ple convex spectrum is obtained that can be character-
ized by its intercepts a,;, and a,,,,. Note that all spectra
have a maximum at f =1, reflecting the dimensionality of
the support. The values of a,;, and a_,, are given in
Table I for all the proteins investigated. The region to
the left of the maximum is determined by the positive
moments of the distribution and is dominated by high
probability sequences of accessibility values. The region
to the right of the maximum is due to the negative mo-
ments and, consequently, is dominated by low probability
sequences. As a comparison, the spectrum for a random
sequence was generated using a sequence of random num-
bers. A typical comparison of the protein spectrum and a
random number spectrum is shown in Fig. 2. It was
found in all cases that random number sequences had
much narrower spectra than the protein fractional acces-
sibility sequences of corresponding length. Thus, the
breadth of the proteins multifractal spectrum can be at-
tributed to nonrandom effects within the data sequence.
After considering the comparison to random se-
quences, the multifractal behavior of sequences generated
from improperly folded proteins is treated. An important
problem in biochemistry is the development of algo-
rithms to predict protein structure from sequence infor-
mation (cf. [26,27]). As competing algorithms are
developed, it is important to be able to assess their rela-
tive performance on protein sequences whose structures
are not known. The multifractal approach potentially
provides a diagnostic tool for assessing the performance
of such algorithms. Computer simulations were per-
formed that generated improperly folded proteins. The
proteins were misfolded in the manner of Novotny, Bruc-
coleri, and Karplus [28]. Two proteins having a com-

TABLE 1. Summary of the results of the multifractal analysis. Note that 0,(01) and 0,(10) can be

obtained from the conservation equations, Eq. (11).

Class Protein Length Qin Cnax 0,(00) o,(11)
FeS Ferrodoxin 54 0.88 1.12 0.543 0.460
Ferrodoxin 98 0.76 1.53 0.590 0.346
a Cytochrome C 103 0.79 1.47 0.578 0.361
Ca-binding 107 0.87 1.36 0.547 0.390
Parvalbumin
Myoglobin 153 0.73 1.52 0.603 0.349
B Plastocyanin 99 0.82 1.51 0.566 0.351
a-lytic protease 198 0.75 1.73 0.595 0.301
Convanavalin A4 237 0.73 2.12 0.603 0.230
Acid proteinase 330 0.71 2.13 0.611 0.228
a,B alternate Flavodoxin 138 0.75 2.49 0.595 0.178
Adenylate kinase 194 0.71 2.04 0.611 0.243
Carboxypeptidase A4 307 0.7 2.88 0.616 0.136
a,f3 segregate Papain D 212 0.7 2.46 0.616 0.182
Actinidin 218 0.7 2.4 0.616 0.189
Carbonic anhydrase B 261 0.75 2.53 0.595 0.173
Thermolysin 316 0.7 2.93 0.616 0.131
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TABLE II. Comparison of multifractal parameters for native
and misfolded proteins. The last column lists Aa = . — Apmin-

Protein Apnin max Aa
Elastase 0.76 1.96 1.20
Misfold (concanavalin A4 frame) 0.78 1.71 0.93
Concanavalin 4 0.74 2.14 1.40
Misfold (elastase frame) 0.76 1.72 0.96
Carboxypeptidase A4 0.7 2.88 2.2
Misfold (thermolysin frame) 0.7 2.06 1.4
Adenylate kinase 0.71 2.04 1.33
Misfold (a-lytic protease frame) 0.71 1.76 1.05
Flavodoxin 0.75 2.49 1.74
Misfold (myoglobin frame) 0.75 1.70 0.95
Carboxypeptidase A4 0.7 2.88 2.2
Misfold (arabinose-binding protein 0.74 1.96 1.22

frame)

0.77 2.21 1.44
0.70 2.26 1.56

Arabinose-binding protein
Misfold (carboxypeptidase A frame)

Ferredoxin 0.76 1.53 0.77
Misfold (plastocyanin frame) 0.83 1.40 0.57
Plastocyanin 0.82 1.51 0.69
Misfold (ferredoxin frame) 0.81 1.42 0.61

mensurate number of amino acid residues but dissimilar
structures were selected. The amino acid side chains of
one protein were then placed in sequence on the back-
bone of the other, and vice versa. The incorrectly folded
structures were then energy minimized using the
geometry optimization algorithm of the computer pro-
gram HYPERCHEM (Hypercube, Inc.), which implements
an AMBER (Assisted Model Building and Energy
Refinement) force field. The following protein pairs were
used: plastocyanin (99 a.a.) (a.a. denotes amino acid) and
ferredoxin (98 a.a.), carboxypeptidase 4 (307 a.a.) and
arabinose-binding protein (306 a.a.), and elastase (240
a.a.) and concanavalin 4 (237 a.a.). When the lengths
were incommensurate the longer sequence was truncated.
The multifractal parameters a,,;, and a,,,,, for these pairs
are shown in Table II. The following proteins were also
misfolded: papain D (212 a.a.), adenylate kinase (194
a.a.), flavodoxin (138 a.a.), and again carboxypeptidase A.
These sequences were placed on larger frames and then
truncated. The frames used belong to the following pro-
teins: actinidin (218 a.a.), a-lytic protease (198 a.a.),
myoglobin (153 a.a.), and thermolysin (316 a.a.), respec-
tively.

The notable feature of the multifractal spectra of the
misfolded structures when compared to the spectra of the
properly folded proteins is that the misfolded spectra are
narrower. This is well illustrated in Fig. 5, where the
spectra of the elastase-concanavalin 4 swap-pair is exhib-
ited. The reduced width (Aa) for misfolded proteins is
also seen in Table II. Visualization of the improperly
folded proteins via computer graphics reveals that the
structures are not closely packed, containing many open
regions. These open spaces destroy the alternating re-
gions of high and low solvent accessibilities of the se-
quence found in properly folded proteins. They intro-
duce more randomness and less correlation into the se-
quence data. This effect is discussed further in Sec. V.
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FIG. 5. Multifractal spectra of solvent accessibilities of im-
properly folded proteins and the corresponding properly folded
structure. (A) O, concanavalin A4; [], misfolded concanavalin 4
on an elastase frame. (B) O, elastase; [J, misfolded structure
elastase on a concanavalin A4 frame.

The narrowing of the spectrum is an observation that ex-
ists for all the misfolded proteins except one, arabinose-
binding protein. In this case, the protein has a large
binding cleft [25] and is thus a rather open structure. Im-
properly folding the arabinose-binding protein sequence
on the carboxypeptidase 4 frame produced a well-packed
structure. Therefore, the multifractal spectrum of
arabinose-binding protein is narrower than that of the
misfolded structure.

IV. RANDOM MULTIPLICATIVE MODEL

Although the multifractal spectra in Figs. 3 and 4 have
a range of widths, they all can be fit by a single model.
This model involves a binary random multiplicative pro-
cess with one-step memory. In this section, the pro-
cedure for extracting a random multiplicative process
from the multifractal spectrum is presented. The devel-
opment of Chhabra, Jensen, and Sreenivasen [29] is fol-
lowed. Figure 6 illustrates a binary random multiplica-
tive process. It is a simple model in which units in the se-
quence can exist in one of two states. For heuristic pur-
poses, the context of a protein chain is considered.
Proceeding down the length of the chain, each amino
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FIG. 6. Schematic showing a portion of a binary tree that
corresponds to a random multiplicative process. Sequences of
exposed (e) or buried (b) units are generated by a random pro-
cess. Probabilities of a given step are determined by the preced-
ing unit. The Feigenbaum scaling functions o ,(ij) are associat-
ed with the indicated steps in the tree. See text for details.

acid is assumed to be in one of two states, exposed (e) or
buried (b). The configuration is part of a binary tree con-
taining all possible combinations of e and b sequences. If
the probability of an e or b is determined by the preced-
ing unit, then the model has one-step memory. These
binary trees are hierarchical structures, as the early
branches dictate the region that the sequence will end up
in.

The multifractality of such binary trees has been exten-
sively investigated. In general, such trees give multifrac-
tal spectra that can be characterized by three indepen-
dent parameters, ® i, Qmax, a0d [ .. These parameters
can be derived from the probabilities associated with
each branch of the tree (cf. [29]). The connection be-
tween these probabilities and the multifractal spectrum is
briefly outlined here, where a model known as the 2X2 P
model is adopted. The addition of each unit on the tree
has a probability associated with it. This probability is
incorporated into a parameter known as the Feigenbaum
scaling factor. For a binary model with one-step
memory, there are four such scaling factors (see Fig. 6):
ap(OO), ap(lO), ap(ll), and Up(Ol). These scaling fac-
tors are defined as

P(ij)

PG) 9)
where P(ij) is the probability of an i unit following a j
unit and P(j) is the probability of a j unit existing. The
product of the scaling factors associated with each
branch gives the probability for a specific configuration
or sequence. Probability must be conserved at every
splitting of a branch, so two conservation equations exist.
They are

ap(00)+0p(10)=1

o,lij)=

(10a)
0,0 +0,(1)=1. (10b)

The problem of calculating the probability distribution

of binary trees can be represented as an eigenvalue prob-
lem [30]. Binary trees with one-step memory are con-
veniently handled using a transfer matrix method [29].
The transfer matrix T is defined as

0#(00) og(onl

T=
9(10) o9(11)

(11)

The eigenvalues of this matrix, A(q), lead directly to the
mass exponent

_ —InA(g)
g)=—>"""> (12)

where the factor of 2 in Eq. (12) is a result of the binary
process. Once Eq. (12) is solved, Egs. (6) and (8) lead
directly to the multifractal spectrum. The eigenvalues
are determined explicitly from the quadratic equation

Aq)—Mg@)Tr[T]+det[T]=0 . (13)
This gives
Mg)= 2200 o3l [04(00)+0(11)]?
2 2
172
+02(01)08(10) (14)

Using the above results, the scaling functions can be
extracted from the multifractal spectrum. At the extre-
ma of the spectra (f =0), one can assign

__In[0,(00)]

Ain = —ln(2) ’ (15a)
_In[o,(11 )]

Apax — "‘111(2) (15b)

The conservation equations [Eq. (10)] are then used to
determine the other parameters. The third independent
parameter f, ., is fixed at unity as a result of having a
binary process on a linear sequence. In Table I, the
values determined for the two independent scaling factors
are given for all the proteins studied.

This procedure has fixed three points (the two extrema
and the maximum) on the simple, convex curves in Figs.
3 and 4. Because the curves vary smoothly, the interven-
ing regions are accurately fit. Thus, this simple empirical
model can accurately fit all the protein data. This, of
course, does not prove that the protein data result from a
binary multiplicative process. However, it shows that the
underlying phenomenon does not require a complicated
model to describe its multifractal behavior. To test the
validity of the multiplicative model, one must provide an
interpretation of the scaling parameters from a physical
model. For instance, it was previously shown that the
Bragg-Zimm model of an alpha helix can be mapped into
a binary multiplicative model with one-step memory [19].
Using these results, one obtains physically unrealistic pa-
rameters for the cooperativity parameter of the alpha
helix. Not too surprisingly, the helix-coil model of an al-
pha helix is seen not to be applicable to proteins. In the
next section, alternate models are discussed that may lead
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to a clearer physical and less empirical picture of the ob-
served multifractal spectrum.

V. DISCUSSION

In this work, it was shown that a protein structural pa-
rameter, the solvent accessibility of amino acid side
chains, is distributed in a multifractal fashion along the
length of polymer. It was also seen that this distribution
is consistent with that generated by a random multiplica-
tive process with one-step memory. To understand the
implications of the observed multifractality, one must ad-
dress the question of the very nature of multifractals.
Indeed, this has been the topic of recent research (cf. [31])
and there is, at this time, no single answer to this ques-
tion. However, two phenomena are known to give rise to
multifractal behavior. They are random multiplicative
processes and processes that involve the convolution of
two probability functions. As will be argued, both of
these effects may be occurring in proteins.

The multifractal formalism can be used to characterize
certain distributions of random variables. To distinguish
between multifractal behavior and other, more common
statistical behavior, one must focus on the breadth of the
distribution function. For instance, in many random ad-
ditive processes, the central limit theorem can be applied
and a Gaussian distribution is obtained. If one observes
the probability function (P ) that is an average over the
independent random variables of the system, it is seen to
have a narrow distribution whose moments obey
(P7) =a,(P)?, where a, is some nonsingular function in
g. Multifractal distributions on the other hand cannot be
characterized by such simple moment relationships. This
signifies a loss of scaling for the system, that is, the sys-
tem no longer has a characteristic length. This results in
an extremely broad distribution. For multifractals the
moments are such that (P9) ~ (P )™?, where 7(q) is the
function defined in Eqgs. (3) and (4).

Multifractal moment distributions arise in problems in-
volving random multiplicative processes. For such pro-
cesses an averaged parameter ( 4 ) is characterized by
the product given by

(A)Y=T] 4p; » (16)

where the product is over the i random variables of the
systems. There are two major differences between the
behavior of multiplicative and additive random processes.
For multiplicative processes, a rare event (small p;) can
dominate the distribution, while for additive processes
rare events have very little impact. Also, in multiplica-
tive processes short range correlations can have a strong
impact on the product in Eq. (16). Additive processes are
insensitive to short range correlations because correlated
pairs are often distributed as a single random variable.
Multifractal behavior can also arise in cases where a
distribution results from a convolution of two distribu-
tions. This situation arises in problems of random walks
on random structures [32,33]. If one has two relatively
narrow distributions, say P(r,¢) and ®(/,r), the convolu-
tion can result in a broad logarithmic distribution. In the

random walk problem, ¢ is time, 7 is a Euclidean distance,
and [ is a “‘chemical” or polymer contour distance. The
multifractal spectrum is generated by the convolution in-
tegral

(PO)= [ “®(1,r)Pr,0)dr=(P)"? . (17)

Such convolution problems present a direct analytic
theory of multifractal behavior.

Both of the above forms of multifractality may be
occurring in proteins. As discussed in Sec. IV, it has pre-
viously been shown that the Bragg-Zimm model of the al-
pha helix exhibits multifractal behavior [18,19]. Such
order-disorder models are adaptations of the one-
dimensional Ising model and consider only nearest neigh-
bor interactions. The partition function for such a model
is obtained by summing all possible sequences. In most
helix-coil models, these sequences can be generated by a
simple binary process. Because only nearest neighbors
are considered when adding a unit to the sequence, the
process is binary with one-step memory. This model can
be mapped into the 2X2 P model used in Sec. IV to ana-
lyze the experimental multifractal spectrum.

Such simple helix-coil models are clearly inadequate
for describing protein structure and thermodynamics.
Nevertheless, they can serve as a starting point for other
statistical models. Recent work has made the analogy be-
tween proteins and spin glasses [34—-36]. Helix-coil mod-
els of the alpha helix are a form of the Ising spin model.
Helix-coil models can be used to predict secondary struc-
ture by introducing mathematical devices that introduce
long range and disordering effects. Similar problems
arise in the field of spin glasses. These effects are
modeled in a spin Hamiltonian by introducing spin-spin
coupling factors that are treated as random variables.
Wolynes and co-workers have exploited these analogies
to model protein structure and folding [34-36]. Such
statistical models of proteins employ the replica tech-
nique developed by Edwards (cf. [37]). This method re-
sults in a convolution of a probability function with the
partition function. Thus, it will have the features of Eq.
(17). Therefore, if one utilizes the spin glass analogy,
multifractality in proteins can arise from two sources.
First, the Ising problem, even in one dimension, has an
intrinsic fractal nature [38,39]. This can be put in the
context of a random multiplicative process and the mul-
tifractal behavior is readily demonstrated (see [18,19] for
biopolymer applications). In addition to this effect, the
averaging of coupling constants introduces a convolution
of probability functions, a second potential source of mul-
tifractal behavior. The influence of this convolution
effect on the multifractal behavior of spin glass models is
currently under investigation.

Finally, we turn to the intriguing question of why mis-
folded structures show narrower multifractal spectra
than properly folded structures. Again, considering the
folding to represent a random multiplicative process, rare
events will have a profound influence on the distribution.
A properly folded protein will have rare (or nonrandom)
combinations of exposed residues. Thus, it will have
unusual sequences of solvent accessibilities. A misfolded
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protein, on the other hand, appears closer to a random
sequence. In plots of f(a) versus a, the region to the left
of the maximum corresponds to positive moments
(g >0). This region is dominated by common events or
sequences. The region to the right of the maximum is
influenced by negative moments (g <0). It is dominated
by rare events or sequences. The misfolded spectrum
shows small changes in the left-hand region while large
changes are observed in the right-hand region with the
misfold appearing closer to a random sequence than the
native protein. Thus, the multifractal spectrum shows
great sensitivity to correlated packing of side chains as
reflected in this right-hand region.

The multifractal behavior of the solvent accessibilities
potentially provides a useful tool for addressing a number
of problems in protein structure. First, it can provide a
diagnostic test for comparing protein folding algorithms
for sequences whose structures are unknown. It is antici-
pated that the best algorithm will generate the widest
multifractal spectrum. This approach can also be used to
compare two structures solved for the same x-ray

diffraction data or for comparing NMR structures to x-
ray ones. The correct structure would be expected to
have a broader spectrum than the incorrect one. Finally,
it may also be used in assessing whether a given sequence
is likely to fold into a native structure. Since the hydro-
phobicity of a sidegroup is strongly correlated with its
solvent accessibility, one would anticipate hydrophobici-
ty sequence data to behave in a similar fashion as the ac-
cessibility data. If a multifractal spectrum from the hy-
drophobicity sequence data appears as a random spec-
trum does, it is unlikely that such a sequence would fold
into a well-defined structure. Such issue are currently un-
der investigation.
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